1 F eb 2 00 1 FULLY COMMUTATIVE KAZHDAN – LUSZTIG CELLS

نویسندگان

  • R. M. Green
  • J. Losonczy
چکیده

We investigate the compatibility of the set of fully commutative elements of a Coxeter group with the various types of Kazhdan–Lusztig cells using a canonical basis for a generalized version of the Temperley–Lieb algebra. Cellules pleinement commutatives de Kazhdan–Lusztig Nousétudions la compatibilité entre l'ensemble deséléments pleinement commu-tatifs d'un groupe de Coxeter et les divers types de cellules de Kazhdan–Lusztig, en utilisant une base canonique pour une version généralisée de l'algèbre de Temperley– Lieb.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Leading coefficients of Kazhdan–Lusztig polynomials and fully commutative elements

Let W be a Coxeter group of type ̃ An−1. We show that the leading coefficient, μ(x,w), of the Kazhdan–Lusztig polynomial Px,w is always equal to 0 or 1 if x is fully commutative (and w is arbitrary).

متن کامل

On 321-Avoiding Permutations in Affine Weyl Groups

We introduce the notion of 321-avoiding permutations in the affine Weyl group W of type An−1 by considering the group as a George group (in the sense of Eriksson and Eriksson). This enables us to generalize a result of Billey, Jockusch and Stanley to show that the 321-avoiding permutations in W coincide with the set of fully commutative elements; in other words, any two reduced expressions for ...

متن کامل

Fully Commutative Elements and Kazhdan–lusztig Cells in the Finite and Affine Coxeter Groups

The main goal of the paper is to show that the fully commutative elements in the affine Coxeter group e Cn form a union of two-sided cells. Then we completely answer the question of when the fully commutative elements of W form or do not form a union of two-sided cells in the case where W is either a finite or an affine Coxeter group. Let W be a Coxeter group with S the distinguished generator ...

متن کامل

M ay 2 00 8 Leading coefficients of the Kazhdan - Lusztig polynomials for an Affine Weyl group of type

In this paper we compute the leading coefficients μ(y,w) of the Kazhdan-Lusztig polynomials Py,w for an affineWeyl group of type B̃2. When a(y) ≤ a(w) or a(y) = 2 and a(w) = 1, we compute all μ(y,w) clearly, where a(y) is the a-function of a Coxeter group defined by Lusztig (see [L1]). With these values μ(y,w), we are able to show that a conjecture of Lusztig on distinguished involutions is true...

متن کامل

2 00 7 Generalized Jones Traces and Kazhdan – Lusztig Bases

We develop some applications of certain algebraic and combinatorial conditions on the elements of Coxeter groups, such as elementary proofs of the pos-itivity of certain structure constants for the associated Kazhdan–Lusztig basis. We also explore some consequences of the existence of a Jones-type trace on the Hecke algebra of a Coxeter group, such as simple procedures for computing leading ter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001